Interfaces
interfaces
ScoredSequence(sequence: list[str], mass_error: float, sequence_log_probability: float, token_log_probabilities: list[float])
dataclass
This class holds a residue sequence and its log probability.
sequence: list[str]
instance-attribute
mass_error: float
instance-attribute
sequence_log_probability: float
instance-attribute
token_log_probabilities: list[float]
instance-attribute
Decodable
An interface for models that can be decoded.
Algorithms should conform to the search interface.
residue_set: ResidueSet
abstractmethod
property
Every model must have a residue_set attribute.
init(spectra: Float[Spectrum, ' batch'], precursors: Float[PrecursorFeatures, ' batch'], *args, **kwargs) -> Any
abstractmethod
Initialize the search state.
| PARAMETER | DESCRIPTION |
|---|---|
spectra
|
The spectra to be sequenced.
TYPE:
|
precursors
|
The precursor mass, charge and mass-to-charge ratio.
TYPE:
|
score_candidates(sequences: Integer[Peptide, '...'], precursor_mass_charge: Float[PrecursorFeatures, '...'], *args, **kwargs) -> torch.FloatTensor
abstractmethod
Generate and score the next set of candidates.
| PARAMETER | DESCRIPTION |
|---|---|
sequences
|
Partial residue sequences in generated the course of decoding.
TYPE:
|
precursor_mass_charge
|
The precursor mass, charge and mass-to-charge ratio.
TYPE:
|
get_residue_masses(mass_scale: int) -> torch.LongTensor
abstractmethod
Get residue masses for the model's residue vocabulary.
| PARAMETER | DESCRIPTION |
|---|---|
mass_scale
|
The scale in Daltons at which masses are calculated and rounded off. For example, a scale of 10000 would represent masses at a scale of 1e4 Da.
TYPE:
|
decode(sequence: Integer[Peptide, '...']) -> list[str]
abstractmethod
Map sequences of indices to residues using the model's residue vocabulary.
| PARAMETER | DESCRIPTION |
|---|---|
sequence
|
The sequence of residue indices to be mapped to the corresponding residue strings.
TYPE:
|
get_eos_index() -> int
abstractmethod
Get the end of sequence token's index in the model's residue vocabulary.
get_empty_index() -> int
abstractmethod
Get the empty token's index in the model's residue vocabulary.
Decoder(model: Decodable)
A class that implements some search algorithm for decoding.
Model should conform to the Decodable interface.
| PARAMETER | DESCRIPTION |
|---|---|
model
|
The model to predict residue sequences from using the implemented search algorithm.
TYPE:
|
model = model
instance-attribute
decode(spectra: Float[Spectrum, '...'], precursors: Float[PrecursorFeatures, '...'], *args, **kwargs) -> dict[str, Any]
abstractmethod
Generate the predicted residue sequence using the decoder's search algorithm.
| PARAMETER | DESCRIPTION |
|---|---|
spectra
|
The spectra to be sequenced.
TYPE:
|
precursors
|
The precursor mass, charge and mass-to-charge ratio.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
dict[str, Any]
|
dict[str, Any]: Required keys: - "sequence": list[str] - "mass_error": float - "sequence_log_probability": float - "token_log_probabilities": list[float] - "encoder_output": list[float] (optional) Example additional keys: - "sequence_beam_0": list[str] |