Predict
predict
logger = ColorLog(console, __name__).logger
module-attribute
CONFIG_PATH = Path(__file__).parent.parent / 'configs'
module-attribute
DiffusionPredictor(config: DictConfig)
Bases: AccelerateDeNovoPredictor
Predictor for the InstaNovo+ model.
refine = config.get('refine', False)
instance-attribute
refine_all = config.get('refine_all', True)
instance-attribute
refine_threshold = np.log(config.get('refine_threshold', 0.9))
instance-attribute
precursor_tolerance = config.get('filter_precursor_ppm', 50)
instance-attribute
load_model() -> Tuple[nn.Module, DictConfig]
Setup the model.
postprocess_dataset(dataset: Dataset) -> Dataset
Load previous predictions for refinement.
setup_data_processor() -> DataProcessor
Setup the data processor.
setup_decoder() -> Decoder
Setup the decoder.
get_predictions(batch: Any) -> dict[str, Any]
Get the predictions for a batch.
CombinedPredictor(config: DictConfig)
Bases: TransformerPredictor
Predictor for the combined InstaNovo+ model.
diffusion_load_model = DiffusionPredictor.load_model
class-attribute
instance-attribute
diffusion_get_predictions = DiffusionPredictor.get_predictions
class-attribute
instance-attribute
refine = config.get('refine', False)
instance-attribute
refine_all = config.get('refine_all', True)
instance-attribute
refine_threshold = np.log(config.get('refine_threshold', 0.9))
instance-attribute
precursor_tolerance = config.get('filter_precursor_ppm', 50)
instance-attribute
diffusion_model: nn.Module = self.accelerator.prepare(self.diffusion_model)
instance-attribute
load_model() -> Tuple[nn.Module, DictConfig]
Setup the model.
setup_decoder() -> Decoder
Setup the decoder.
get_predictions(batch: Any) -> dict[str, Any]
Get the predictions for a batch.